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Preface
We are proud that this book is the recipient of the Textbook
Excellence Award from the Text & Academic Authors Asso-
ciation. Its quality owes much to the many professors who
have taken the time to write and share their pedagogical
expertise. We thank them all.

This 12th edition ofElementary Linear Algebra, Applications
Version has a new contemporary design, many new exer-
cises, a new application on the mathematics of facial recog-
nition, and some organizational changes suggested by the
classroom experience of many users. However, the funda-
mental philosophy of this book has not changed. It provides
an introductory treatment of linear algebra that is suitable
for a first undergraduate course. Its aim is to present the fun-
damentals of the subject in the clearest possible way, with
sound pedagogy being the main consideration. Although
calculus is not a prerequisite, some optional material here
is clearly marked for students with a calculus background.
If desired, that material can be omitted without loss of con-
tinuity. Technology is not required to use this text. How-
ever, clearly marked exercises that require technology are
included for those who would like to use MATLAB, Math-
ematica, Maple, or other software with linear algebra capa-
bilities. Supporting data files are posted on both of the fol-
lowing sites:

www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in this Edition
Many parts of the text have been revised based on an exten-
sive set of reviews. Here are the primary changes:

• New Application Section — A new section on the
mathematics of facial recognition has been added to
Chapter 10.

• Earlier Linear Transformations — Selected mate-
rial on linear transformations that was covered later in
the previous edition has been moved to Chapter 1 to
provide amore complete early introduction to the topic.
Specifically, some of the material in Sections 4.10 and
4.11 of the previous edition was extracted to form the
new Section 1.9, and the remaining material is now in
Section 8.6.

• New Section 4.3 Devoted to Spanning Sets— Sec-
tion 4.2 of the previous edition dealt with both sub-
spaces and spanning sets. Classroom experience has
suggested that too many concepts were being intro-
duced at once, so we have slowed down the pace and
split off the material on spanning sets to create a new
Section 4.3.

• New Examples — New examples have been added,
where needed, to support the exercise sets.

• New Exercises — New exercises have been added
with special attention to the expanded early introduc-
tion to linear transformations.

Hallmark Features
• Interrelationships Among Concepts— One of our
main pedagogical goals is to convey to the student
that linear algebra is not a collection of isolated defi-
nitions and techniques, but is rather a cohesive subject
with interrelated ideas. One way in which we do this
is by using a crescendo of theorems labeled “Equiva-
lent Statements” that continually revisit relationships
among systems of equations, matrices, determinants,
vectors, linear transformations, and eigenvalues. To get
a general sense of this pedagogical technique see The-
orems 1.5.3, 1.6.4, 2.3.8, 4.9.8, 5.1.5, 6.4.5, and 8.2.4.

• Smooth Transition to Abstraction — Because the
transition from Euclidean spaces to general vector
spaces is difficult formany students, considerable effort
is devoted to explaining the purpose of abstraction and
helping the student to “visualize” abstract ideas by
drawing analogies to familiar geometric ideas.

• Mathematical Precision — We try to be as mathe-
matically precise as is reasonable for students at this
level. But we recognize that mathematical precision is
something to be learned, so proofs are presented in a
patient style that is tailored for beginners.

• Suitability for a Diverse Audience — The text is
designed to serve the needs of students in engineering,
computer science, biology, physics, business, and eco-
nomics, as well as those majoring in mathematics.

• Historical Notes—We feel that it is important to give
students a sense of mathematical history and to con-
vey that real people created themathematical theorems
and equations they are studying. Accordingly, we have
included numerous “Historical Notes” that put various
topics in historical perspective.

About the Exercises
• GradedExercise Sets—Each exercise set begins with
routine drill problems and progresses to problems with
more substance. These are followed by three categories
of problems, the first focusing on proofs, the second on
true/false exercises, and the third on problems requir-
ing technology. This compartmentalization is designed
to simplify the instructor’s task of selecting exercises for
homework.
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• True/False Exercises — The true/false exercises are
designed to check conceptual understanding and log-
ical reasoning. To avoid pure guesswork, the students
are required to justify their responses in some way.

• Proof Exercises—Linear algebra courses vary widely
in their emphasis on proofs, so exercises involv-
ing proofs have been grouped for easy identification.
Appendix A provides students some guidance on prov-
ing theorems.

• Technology Exercises—Exercises that require tech-
nology have also been grouped. To avoid burdening the
student with typing, the relevant data files have been
posted on the websites that accompany this text.

• Supplementary Exercises—Each chapter ends with
a set of exercises that draws from all the sections in the
chapter.

Supplementary Materials for Students
Available on the Web
• Self Testing Review—This edition also has an excit-
ing new supplement, called the Linear Algebra Flash-
Card Review. It is a self-study testing system based on
the SQ3R study method that students can use to check
their mastery of virtually every fundamental concept in
this text. It is integrated intoWileyPlus, and is available
as a free app for iPads. The app can be obtained from the
Apple Store by searching for:

Anton Linear Algebra FlashCard Review

• Student Solutions Manual — This supplement
provides detailed solutions to most odd-numbered
exercises.

• Maple Data Files — Data files in Maple format for
the technology exercises that are posted on thewebsites
that accompany this text.

• Mathematica Data Files— Data files in Mathemat-
ica format for the technology exercises that are posted
on the websites that accompany this text.

• MATLABData Files—Data files inMATLAB format
for the technology exercises that are posted on the web-
sites that accompany this text.

• CSV Data Files — Data files in CSV format for the
technology exercises that are posted on the websites
that accompany this text.

• How to Read andDo Proofs—A series of videos cre-
ated by Prof. Daniel Solow of the Weatherhead School
of Management, CaseWestern Reserve University, that
present various strategies for proving theorems. These
are available through WileyPLUS as well as the web-
sites listed previously. There is also a guide for locating
the appropriate videos for specific proofs in the text.

• MATLAB Linear Algebra Manual and Laboratory
Projects— This supplement contains a set of labora-
tory projects written by Prof. Dan Seth of West Texas
A&M University. It is designed to help students learn
key linear algebra concepts by using MATLAB and is
available in PDF form without charge to students at
schools adopting the 12th edition of this text.

• Data Files— The data files needed for the MATLAB
Linear Algebra Manual and Lab Projects supplement.

• How to Open and Use MATLAB Files — Instruc-
tional document on how to download, open, and use
the MATLAB files accompanying this text.

Supplementary Materials for
Instructors
• Instructor Solutions Manual — This supplement
provides worked-out solutions to most exercises in the
text.

• PowerPoint Slides — A series of slides that display
important definitions, examples, graphics, and theo-
rems in the book. These can also be distributed to stu-
dents as review materials or to simplify note-taking.

• Test Bank—Test questions and sample examinations
in PDF or LaTeX form.

• Image Gallery — Digital repository of images from
the text that instructors may use to generate their own
PowerPoint slides.

• WileyPLUS — An online environment for effective
teaching and learning. WileyPLUS builds student con-
fidence by taking the guesswork out of studying and by
providing a clear roadmap of what to do, how to do it,
andwhether itwas done right. Its purpose is tomotivate
and foster initiative so instructors can have a greater
impact on classroom achievement and beyond.

• WileyPLUS Question Index — This document lists
every question in the current WileyPLUS course and
provides the name, associated learning objective, ques-
tion type, and difficulty level for each. If available, it
also shows the correlation between the previous edi-
tion WileyPLUS question and the current WileyPLUS
question, so instructors can conveniently see the evolu-
tion of a question and reuse it from previous semester
assignments.

A Guide for the Instructor
Although linear algebra courses vary widely in content and
philosophy, most courses fall into two categories, those
with roughly 40 lectures, and those with roughly 30 lec-
tures. Accordingly, we have created the following long and
short templates as possible starting points for constructing
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your own course outline. Keep in mind that these are just
guides, and we fully expect that you will want to customize
them to fit your own interests and requirements. Neither of
these sample templates includes applications, so keep that
in mind as you work with them.

Long Template Short Template

Chapter 1: Systems 8 lectures 6 lectures
of Linear Equations
and Matrices

Chapter 2: 3 lectures 3 lectures
Determinants

Chapter 3: Euclidean 4 lectures 3 lectures
Vector Spaces

Chapter 4: General 8 lectures 7 lectures
Vector Spaces

Chapter 5: 3 lectures 3 lectures
Eigenvalues and
Eigenvectors

Chapter 6: Inner 3 lectures 2 lectures
Product Spaces

Chapter 7: 4 lectures 3 lectures
Diagonalization and
Quadratic Forms

Chapter 8: General 4 lectures 2 lectures
Linear
Transformations

Chapter 9: Numerical 2 lectures 1 lecture
Methods

Chapter 10:
Applications of As Time Permits
Linear Algebra

Total: 39 lectures 30 lectures

Reviewers
The following people reviewed the plans for this edition,
critiqued much of the content, and provided insightful ped-
agogical advice:

Charles Ekene Chika, University of Texas at Dallas
Marian Hukle, University of Kansas
Bin Jiang, Portland State University
Mike Panahi, El Centro College
Christopher Rasmussen,Wesleyan University
Nathan Reff, The College at Brockport: SUNY
Mark Smith,Miami University
Rebecca Swanson, Colorado School of Mines
R. Scott Williams, University of Central Oklahoma
Pablo Zafra, Kean University

Special Contributions
Our deep appreciation is due to a number of people who
have contributed to this edition in many ways:

Prof. Mark Smith, who critiqued the FlashCard program
and suggested valuable improvements to the text exposition.
Prof. Derek Hein, whose keen eye helped us to correct
some subtle inaccuracies.
Susan Raley, who coordinated the production process and
whose attention to detail made a very complex project run
smoothly.
Prof. Roger Lipsett, whose mathematical expertise and
detailed review of the manuscript has contributed greatly to
its accuracy.
The Wiley Team, Laurie Rosatone, Terri Ward, Melissa
Whelan, Tom Kulesa, Kimberly Eskin, Crystal Franks,
Laura Abrams, Billy Ray, and Tom Nery each of whom con-
tributed their experience, skill, and expertise to the project.

HOWARD ANTON
CHRIS RORRES
ANTON KAUL
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CHAPTER 1

Systems of Linear
Equations and Matrices
CHAPTER CONTENTS

1.1 Introduction to Systems of Linear Equations 2

1.2 Gaussian Elimination 11

1.3 Matrices andMatrix Operations 25

1.4 Inverses; Algebraic Properties of Matrices 40

1.5 Elementary Matrices and a Method for Finding A−1 53

1.6 More on Linear Systems and Invertible Matrices 62

1.7 Diagonal, Triangular, and Symmetric Matrices 69

1.8 Introduction to Linear Transformations 76

1.9 Compositions of Matrix Transformations 90

1.10 Applications of Linear Systems 98

• Network Analysis (Traffic Flow) 98
• Electrical Circuits 100
• Balancing Chemical Equations 103
• Polynomial Interpolation 105

1.11 Leontief Input-Output Models 110

Introduction
Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices often
appear as tables of numerical data that arise from physical observations, but they occur
in various mathematical contexts as well. For example, we will see in this chapter that all
of the information required to solve a system of equations such as

5x + y = 3
2x − y = 4

is embodied in the matrix

[52
1

−1
3
4]

and that the solution of the system can be obtained by performing appropriate opera-
tions on this matrix. This is particularly important in developing computer programs for
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solving systems of equations because computers are well suited for manipulating arrays
of numerical information. However, matrices are not simply a notational tool for solving
systems of equations; they can be viewed as mathematical objects in their own right, and
there is a rich and important theory associated with them that has a multitude of practi-
cal applications. It is the study of matrices and related topics that forms the mathematical
field that we call “linear algebra.” In this chapter we will begin our study of matrices.

1.1 Introduction to Systems of
Linear Equations

Systems of linear equations and their solutions constitute one of the major topics that we
will study in this course. In this first section we will introduce some basic terminology
and discuss a method for solving such systems.

Linear Equations
Recall that in two dimensions a line in a rectangular xy-coordinate system can be repre-
sented by an equation of the form

ax + by = c (a, b not both 0)
and in three dimensions a plane in a rectangular xyz-coordinate system can be represented
by an equation of the form

ax + by + cz = d (a, b, c not all 0)
These are examples of “linear equations,” the first being a linear equation in the variables
x and y and the second a linear equation in the variables x, y, and z. More generally, we
define a linear equation in the n variables x1, x2, . . . , xn to be one that can be expressed
in the form

a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = b (1)
where a1, a2, . . . , an and b are constants, and the a’s are not all zero. In the special cases
where n = 2 or n = 3, wewill often use variableswithout subscripts andwrite linear equa-
tions as

a1x + a2 y = b (2)
a1x + a2 y + a3z = b (3)

In the special case where b = 0, Equation (1) has the form
a1x1 + a2x2 + ⋅ ⋅ ⋅ + anxn = 0 (4)

which is called a homogeneous linear equation in the variables x1, x2, . . . , xn.

EXAMPLE 1 | Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All vari-
ables occur only to the first power and do not appear, for example, as arguments of trigono-
metric, logarithmic, or exponential functions. The following are linear equations:

x+ 3y = 7 x1 − 2x2 − 3x3 + x4 = 0
1
2 x− y+ 3z = −1 x1 + x2 + ⋅ ⋅ ⋅ + xn = 1

The following are not linear equations:

x+ 3y2 = 4 3x+ 2y− xy = 5
sin x+ y = 0 √x1 + 2x2 + x3 = 1
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Afinite set of linear equations is called a system of linear equations or, more briefly,
a linear system. The variables are called unknowns. For example, system (5) that follows
has unknowns x and y, and system (6) has unknowns x1, x2, and x3.

5x + y = 3 4x1 − x2 + 3x3 = −1
2x − y = 4 3x1 + x2 + 9x3 = −4 (5–6)

A general linear system ofm equations in the n unknowns x1, x2, . . . , xn can be written as
The double subscripting on
the coefficients ai j of the
unknowns gives their loca-
tion in the system—the first
subscript indicates the equa-
tion in which the coefficient
occurs, and the second
indicates which unknown
it multiplies. Thus, a12 is
in the first equation and
multiplies x2.

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

(7)

A solution of a linear system in n unknowns x1, x2, . . . , xn is a sequence of n numbers
s1, s2, . . . , sn for which the substitution

x1 = s1, x2 = s2, . . . , xn = sn
makes each equation a true statement. For example, the system in (5) has the solution

x = 1, y = −2

and the system in (6) has the solution

x1 = 1, x2 = 2, x3 = −1

These solutions can be written more succinctly as

(1, −2) and (1, 2, −1)

in which the names of the variables are omitted. This notation allows us to interpret these
solutions geometrically as points in two-dimensional and three-dimensional space. More
generally, a solution

x1 = s1, x2 = s2, . . . , xn = sn
of a linear system in n unknowns can be written as

(s1, s2, . . . , sn)

which is called an ordered n-tuple. With this notation it is understood that all variables
appear in the same order in each equation. If n = 2, then the n-tuple is called an ordered
pair, and if n = 3, then it is called an ordered triple.

Linear Systems in Two and Three Unknowns
Linear systems in two unknowns arise in connectionwith intersections of lines. For exam-
ple, consider the linear system

a1x + b1y = c1
a2x + b2y = c2

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this
system corresponds to a point of intersection of the lines, so there are three possibilities
(Figure 1.1.1):

1. The lines may be parallel and distinct, in which case there is no intersection and con-
sequently no solution.

2. The lines may intersect at only one point, in which case the system has exactly one
solution.

3. The lines may coincide, in which case there are infinitely many points of intersection
(the points on the common line) and consequently infinitely many solutions.
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x

y

No solution

x

y

One solution

x

y

In,nitely many
solutions

(coincident lines)

FIGURE 1.1.1

In general, we say that a linear system is consistent if it has at least one solution
and inconsistent if it has no solutions. Thus, a consistent linear system of two equa-
tions in two unknowns has either one solution or infinitely many solutions—there are
no other possibilities. The same is true for a linear system of three equations in three
unknowns

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3

in which the graphs of the equations are planes. The solutions of the system, if any, corre-
spond to points where all three planes intersect, so again we see that there are only three
possibilities—no solutions, one solution, or infinitely many solutions (Figure 1.1.2).

No solutions
(three parallel planes;

no common intersection)

No solutions
(two parallel planes;

no common intersection)

No solutions
(no common intersection)

In5nitely many solutions
(planes are all coincident;

intersection is a plane)

In5nitely many solutions
(intersection is a line)

One solution
(intersection is a point)

No solutions
(two coincident planes

parallel to the third;
no common intersection)

In5nitely many solutions
(two coincident planes;

intersection is a line)

FIGURE 1.1.2

Wewill prove later that our observations about the number of solutions of linear sys-
tems of two equations in two unknowns and linear systems of three equations in three
unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are
no other possibilities.



November 12, 2018 13:09 C01 Sheet number 5 Page number 5 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

1.1 Introduction to Systems of Linear Equations 5

EXAMPLE 2 | A Linear System with One Solution

Solve the linear system
x− y = 1
2x+ y = 6

Solution We can eliminate x from the second equation by adding−2 times the first equa-
tion to the second. This yields the simplified system

x− y = 1
3y = 4

From the second equation we obtain y = 4
3 , and on substituting this value in the first equa-

tion we obtain x = 1+ y = 7
3 . Thus, the system has the unique solution

x = 7
3 , y = 4

3

Geometrically, this means that the lines represented by the equations in the system intersect
at the single point ( 73 ,

4
3 ). We leave it for you to check this by graphing the lines.

EXAMPLE 3 | A Linear System with No Solutions

Solve the linear system
x+ y = 4

3x+ 3y = 6

Solution We can eliminate x from the second equation by adding−3 times the first equa-
tion to the second equation. This yields the simplified system

x+ y = 4
0 = −6

The second equation is contradictory, so the given system has no solution. Geometrically,
this means that the lines corresponding to the equations in the original system are parallel
and distinct. We leave it for you to check this by graphing the lines or by showing that they
have the same slope but different y-intercepts.

EXAMPLE 4 | A Linear System with Infinitely Many Solutions

Solve the linear system
4x− 2y = 1
16x− 8y = 4

Solution We can eliminate x from the second equation by adding−4 times the first equa-
tion to the second. This yields the simplified system

4x− 2y = 1
0 = 0

The second equation does not impose any restrictions on x and y and hence can be omitted.
Thus, the solutions of the system are those values of x and y that satisfy the single equation

4x− 2y = 1 (8)

Geometrically, this means the lines corresponding to the two equations in the original sys-
tem coincide. Oneway to describe the solution set is to solve this equation for x in terms of y to
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obtain x = 1
4 +

1
2 y and then assign an arbitrary value t (called aparameter) to y. This allows

us to express the solution by the pair of equations (called parametric equations)

x = 1
4 +

1
2 t, y = t

We can obtain specific numerical solutions from these equations by substituting numerical
values for the parameter t. For example, t = 0 yields the solution ( 14 , 0), t = 1 yields the

solution ( 34 , 1), and t = −1 yields the solution (− 1
4 , −1). You can confirm that these are

solutions by substituting their coordinates into the given equations.

In Example 4 we could have
also obtained parametric
equations for the solutions
by solving (8) for y in terms
of x and letting x= t be the
parameter. The resulting
parametric equations would
look different but would
define the same solution set.

EXAMPLE 5 | A Linear System with Infinitely Many Solutions

Solve the linear system
x− y+ 2z = 5

2x− 2y+ 4z = 10
3x− 3y+ 6z = 15

Solution This system can be solved by inspection, since the second and third equations
are multiples of the first. Geometrically, this means that the three planes coincide and that
those values of x, y, and z that satisfy the equation

x− y+ 2z = 5 (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of (9). We can
do this by first solving this equation for x in terms of y and z, then assigning arbitrary values
r and s (parameters) to these two variables, and then expressing the solution by the three
parametric equations

x = 5+ r− 2s, y = r, z = s
Specific solutions can be obtained by choosing numerical values for the parameters r and s.
For example, taking r = 1 and s = 0 yields the solution (6, 1, 0).

Augmented Matrices and Elementary Row Operations
As the number of equations and unknowns in a linear system increases, so does the com-
plexity of the algebra involved in finding solutions. The required computations can be
mademoremanageable by simplifying notation and standardizing procedures. For exam-
ple, by mentally keeping track of the location of the +’s, the x’s, and the =’s in the linear
system

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1
a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2
...

...
...

...
am1x1 + am2x2 + ⋅ ⋅ ⋅ + amnxn = bm

we can abbreviate the system by writing only the rectangular array of numbers

⎡⎢⎢⎢⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n b1
a21 a22 ⋅ ⋅ ⋅ a2n b2
...

...
...

...
am1 am2 ⋅ ⋅ ⋅ amn bm

⎤⎥⎥⎥⎥
⎦

This is called the augmentedmatrix for the system. For example, the augmented matrix

As noted in the introduc-
tion to this chapter, the
term “matrix” is used in
mathematics to denote a
rectangular array of num-
bers. In a later section we
will study matrices in detail,
but for now we will only be
concerned with augmented
matrices for linear systems.

for the system of equations
x1 + x2 + 2x3 = 9
2x1 + 4x2 − 3x3 = 1
3x1 + 6x2 − 5x3 = 0

is [
1 1 2 9
2 4 −3 1
3 6 −5 0

]
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Historical Note

Maxime Bôcher
(1867–1918)

The first known use of augmented matrices appeared between
200 B.C. and 100 B.C. in a Chinesemanuscript entitledNineChapters
of Mathematical Art. The coefficients were arranged in columns
rather than in rows, as today, but remarkably the system was
solved by performing a succession of operations on the columns.
The actual use of the term augmentedmatrix appears to have been
introduced by the American mathematician Maxime Bôcher
in his book Introduction to Higher Algebra, published in 1907.
In addition to being an outstanding research mathematician and
an expert in Latin, chemistry, philosophy, zoology, geography,
meteorology, art, andmusic, Bôcherwas an outstanding expositor
of mathematics whose elementary textbooks were greatly appre-
ciated by students and are still in demand today.

[Image: HUP Bocher, Maxime (1), olvwork650836]

The basic method for solving a linear system is to perform algebraic operations on
the system that do not alter the solution set and that produce a succession of increasingly
simpler systems, until a point is reached where it can be ascertained whether the system
is consistent, and if so, what its solutions are. Typically, the algebraic operations are:

1. Multiply an equation through by a nonzero constant.
2. Interchange two equations.
3. Add a constant times one equation to another.

Since the rows (horizontal lines) of an augmented matrix correspond to the equations in
the associated system, these three operations correspond to the following operations on
the rows of the augmented matrix:

1. Multiply a row through by a nonzero constant.
2. Interchange two rows.
3. Add a constant times one row to another.

These are called elementary row operations on a matrix.
In the following example we will illustrate how to use elementary row operations

and an augmented matrix to solve a linear system in three unknowns. Since a systematic
procedure for solving linear systems will be developed in the next section, do not worry
about how the steps in the example were chosen. Your objective here should be simply to
understand the computations.

EXAMPLE 6 | Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

x + y + 2z = 9
2x + 4y − 3z = 1
3x + 6y − 5z = 0

⎡
⎢
⎢
⎣

1 1 2 9
2 4 −3 1
3 6 −5 0

⎤
⎥
⎥
⎦
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Add−2 times the first equation to the second
to obtain

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

Add−2 times the first row to the second to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
3 6 −5 0

⎤
⎥
⎥
⎦

Add −3 times the first equation to the third
to obtain

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

Add −3 times the first row to the third to
obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 2 −7 −17
0 3 −11 −27

⎤
⎥
⎥
⎦

Multiply the second equation by 1
2 to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

3y − 11z = −27

Multiply the second row by 1
2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 3 −11 −27

⎤
⎥
⎥
⎦

Add −3 times the second equation to the
third to obtain

x + y + 2z = 9
y − 7

2 z = − 17
2

− 1
2 z = − 3

2

Add−3 times the second row to the third to
obtain

⎡
⎢
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 − 1
2 − 3

2

⎤
⎥
⎥
⎥
⎦

Multiply the third equation by−2 to obtain
x + y + 2z = 9

y − 7
2 z = − 17

2
z = 3

Multiply the third row by−2 to obtain

⎡
⎢
⎢
⎣

1 1 2 9
0 1 − 7

2 − 17
2

0 0 1 3

⎤
⎥
⎥
⎦

Add−1 times the second equation to the first
to obtain

x + 11
2 z =

35
2

y − 7
2 z = − 17

2
z = 3

Add−1 times the second row to the first to
obtain

⎡
⎢
⎢
⎢
⎣

1 0 11
2

35
2

0 1 − 7
2 − 17

2
0 0 1 3

⎤
⎥
⎥
⎥
⎦

Add−11
2 times the third equation to the first

and 7
2 times the third equation to the second

to obtain x = 1
y = 2

z = 3

Add− 11
2 times the third row to the first and

7
2 times the third row to the second to obtain

⎡
⎢
⎢
⎣

1 0 0 1
0 1 0 2
0 0 1 3

⎤
⎥
⎥
⎦

The solution x = 1, y = 2, z = 3 is now evident.

The solution in this example
can also be expressed as
the ordered triple (1, 2, 3)
with the understanding that
the numbers in the triple
are in the same order as
the variables in the system,
namely, x, y, z.

Exercise Set 1.1

1. In each part, determine whether the equation is linear in x1,
x2, and x3.

a. x1 + 5x2 −√2 x3 = 1 b. x1 + 3x2 + x1x3 = 2

c. x1 = −7x2 + 3x3 d. x−21 + x2 + 8x3 = 5

e. x3/51 − 2x2 + x3 = 4 f. 𝜋x1 −√2 x2 = 71/3

2. In each part, determine whether the equation is linear in x
and y.

a. 21/3x+√3y = 1 b. 2x1/3 + 3√y = 1

c. cos (𝜋7 )x− 4y = log 3 d. 𝜋
7 cos x− 4y = 0

e. xy = 1 f. y+ 7 = x
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3. Using the notation of Formula (7), write down a general linear
system of

a. two equations in two unknowns.
b. three equations in three unknowns.
c. two equations in four unknowns.

4. Write down the augmented matrix for each of the linear sys-
tems in Exercise 3.

In each part of Exercises 5–6, find a system of linear equations in the
unknowns x1, x2, x3, . . . , that corresponds to the given augmented
matrix.

5. a. [
2 0 0
3 −4 0
0 1 1

] b. [
3 0 −2 5
7 1 4 −3
0 −2 1 7

]

6. a. [
0 3 −1 −1 −1
5 2 0 −3 −6]

b.
⎡
⎢
⎢
⎢
⎣

3 0 1 −4 3
−4 0 4 1 −3
−1 3 0 −2 −9
0 0 0 −1 −2

⎤
⎥
⎥
⎥
⎦

In each part of Exercises 7–8, find the augmented matrix for the lin-
ear system.

7. a. −2x1 = 6
3x1 = 8
9x1 = −3

b. 6x1 − x2 + 3x3 = 4
5x2 − x3 = 1

c. 2x2 − 3x4 + x5 = 0
−3x1 − x2 + x3 = −1
6x1 + 2x2 − x3 + 2x4 − 3x5 = 6

8. a. 3x1 − 2x2 = −1
4x1 + 5x2 = 3
7x1 + 3x2 = 2

b. 2x1 + 2x3 = 1
3x1 − x2 + 4x3 = 7
6x1 + x2 − x3 = 0

c. x1 = 1
x2 = 2

x3 = 3

9. In each part, determine whether the given 3-tuple is a solution
of the linear system

2x1 − 4x2 − x3 = 1
x1 − 3x2 + x3 = 1
3x1 − 5x2 − 3x3 = 1

a. (3, 1, 1) b. (3,−1, 1) c. (13, 5, 2)

d. ( 132 ,
5
2 , 2) e. (17, 7, 5)

10. In each part, determine whether the given 3-tuple is a solution
of the linear system

x + 2y − 2z = 3
3x − y + z = 1
−x + 5y − 5z = 5

a. ( 57 ,
8
7 , 1) b. ( 57 ,

8
7 , 0) c. (5, 8, 1)

d. ( 57 ,
10
7 ,

2
7) e. ( 57 ,

22
7 , 2)

11. In each part, solve the linear system, if possible, and use the
result to determine whether the lines represented by the equa-
tions in the system have zero, one, or infinitely many points of
intersection. If there is a single point of intersection, give its
coordinates, and if there are infinitely many, find parametric
equations for them.

a. 3x− 2y = 4
6x− 4y = 9

b. 2x− 4y = 1
4x− 8y = 2

c. x− 2y = 0
x− 4y = 8

12. Under what conditions on a and b will the linear system have
no solutions, one solution, infinitely many solutions?

2x− 3y = a
4x− 6y = b

In each part of Exercises 13–14, use parametric equations to describe
the solution set of the linear equation.
13. a. 7x− 5y = 3

b. 3x1 − 5x2 + 4x3 = 7

c. −8x1 + 2x2 − 5x3 + 6x4 = 1

d. 3𝑣 − 8𝑤 + 2x− y+ 4z = 0

14. a. x+ 10y = 2

b. x1 + 3x2 − 12x3 = 3

c. 4x1 + 2x2 + 3x3 + x4 = 20

d. 𝑣 +𝑤 + x− 5y+ 7z = 0

In Exercises 15–16, each linear system has infinitely many solutions.
Use parametric equations to describe its solution set.

15. a. 2x− 3y = 1
6x− 9y = 3

b. x1 + 3x2 − x3 = −4
3x1 + 9x2 − 3x3 = −12
−x1 − 3x2 + x3 = 4

16. a. 6x1 + 2x2 = −8
3x1 + x2 = −4

b. 2x − y + 2z = −4
6x − 3y + 6z = −12

−4x + 2y − 4z = 8

In Exercises 17–18, find a single elementary row operation that will
create a 1 in the upper left corner of the given augmentedmatrix and
will not create any fractions in its first row.

17. a. [
−3 −1 2 4
2 −3 3 2
0 2 −3 1

] b. [
0 −1 −5 0
2 −9 3 2
1 4 −3 3

]

18. a. [
2 4 −6 8
7 1 4 3

−5 4 2 7
] b. [

7 −4 −2 2
3 −1 8 1

−6 3 −1 4
]

In Exercises 19–20, find all values of k for which the given aug-
mented matrix corresponds to a consistent linear system.

19. a. [1 k −4
4 8 2] b. [1 k −1

4 8 −4]

20. a. [ 3 −4 k
−6 8 5] b. [k 1 −2

4 −1 2]
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21. The curve y = ax2 + bx+ c shown in the accompanying fig-
ure passes through the points (x1, y1), (x2, y2), and (x3, y3).
Show that the coefficients a, b, and c form a solution of the
system of linear equations whose augmented matrix is

⎡
⎢
⎢
⎣

x21 x1 1 y1
x22 x2 1 y2
x23 x3 1 y3

⎤
⎥
⎥
⎦

y

x

y = ax2 + bx + c

(x1, y1)

(x3, y3)

(x2, y2)

FIGURE Ex-21

22. Explain why each of the three elementary row operations does
not affect the solution set of a linear system.

23. Show that if the linear equations
x1 + kx2 = c and x1 + l x2 = d

have the same solution set, then the two equations are identi-
cal (i.e., k = l and c = d).

24. Consider the system of equations
ax + by = k
cx + dy = l
ex + 𝑓y = m

Discuss the relative positions of the lines ax+ by = k,
cx+ dy = l, and ex+𝑓y = m when

a. the system has no solutions.

b. the system has exactly one solution.

c. the system has infinitely many solutions.

25. Suppose that a certain diet calls for 7 units of fat, 9 units of
protein, and 16 units of carbohydrates for the main meal, and
suppose that an individual has three possible foods to choose
from to meet these requirements:

Food 1: Each ounce contains 2 units of fat, 2 units of
protein, and 4 units of carbohydrates.

Food 2: Each ounce contains 3 units of fat, 1 unit of
protein, and 2 units of carbohydrates.

Food 3: Each ounce contains 1 unit of fat, 3 units of
protein, and 5 units of carbohydrates.

Let x, y, and z denote the number of ounces of the first, sec-
ond, and third foods that the dieter will consume at the main
meal. Find (but do not solve) a linear system in x, y, and z
whose solution tells how many ounces of each food must be
consumed to meet the diet requirements.

26. Suppose that you want to find values for a, b, and c such that
the parabola y = ax2 + bx+ c passes through the points
(1, 1), (2, 4), and (−1, 1). Find (but do not solve) a system
of linear equations whose solutions provide values for a, b,
and c. How many solutions would you expect this system of
equations to have, and why?

27. Suppose you are asked to find three real numbers such that
the sum of the numbers is 12, the sum of two times the first
plus the second plus two times the third is 5, and the third
number is one more than the first. Find (but do not solve) a
linear system whose equations describe the three conditions.

True-False Exercises
TF. In parts (a)–(h) determine whether the statement is true or

false, and justify your answer.
a. A linear system whose equations are all homogeneous

must be consistent.

b. Multiplying a row of an augmented matrix through by
zero is an acceptable elementary row operation.

c. The linear system

x − y = 3
2x − 2y = k

cannot have a unique solution, regardless of the value of k.

d. A single linear equation with two or more unknowns
must have infinitely many solutions.

e. If the number of equations in a linear system exceeds
the number of unknowns, then the system must be
inconsistent.

f. If each equation in a consistent linear system ismultiplied
through by a constant c, then all solutions to the new sys-
tem can be obtained by multiplying solutions from the
original system by c.

g. Elementary row operations permit one row of an aug-
mented matrix to be subtracted from another.

h. The linear system with corresponding augmented matrix

[2 −1 4
0 0 −1]

is consistent.

Working with Technology
T1. Solve the linear systems in Examples 2, 3, and 4 to see how

your technology utility handles the three types of systems.

T2. Use the result in Exercise 21 to find values of a, b, and c for
which the curve y = ax2 + bx+ c passes through the points
(−1, 1, 4), (0, 0, 8), and (1, 1, 7).
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1.2 Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear equa-
tions. The procedure is based on the idea of performing certain operations on the rows of
the augmentedmatrix that simplify it to a form fromwhich the solution of the system can
be ascertained by inspection.

Considerations in Solving Linear Systems
When considering methods for solving systems of linear equations, it is important to dis-
tinguish between large systems that must be solved by computer and small systems that
can be solved by hand. For example, there are many applications that lead to linear sys-
tems in thousands or even millions of unknowns. Large systems require special tech-
niques to deal with issues of memory size, roundoff errors, solution time, and so forth.
Such techniques are studied in the field of numerical analysis and will only be touched
on in this text. However, almost all of the methods that are used for large systems are
based on the ideas that we will develop in this section.

Echelon Forms
In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z by
reducing the augmented matrix to the form

[
1 0 0 1
0 1 0 2
0 0 1 3

]

fromwhich the solution x = 1, y = 2, z = 3 became evident. This is an example of amatrix
that is in reduced row echelon form. To be of this form, amatrix must have the following
properties:

1. If a row does not consist entirely of zeros, then the first nonzero number in the row
is a 1. We call this a leading 1.

2. If there are any rows that consist entirely of zeros, then they are grouped together at
the bottom of the matrix.

3. In any two successive rows that do not consist entirely of zeros, the leading 1 in the
lower row occurs farther to the right than the leading 1 in the higher row.

4. Each column that contains a leading 1 has zeros everywhere else in that column.

A matrix that has the first three properties is said to be in row echelon form. (Thus,
a matrix in reduced row echelon form is of necessity in row echelon form, but not
conversely.)

EXAMPLE 1 | Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

[
1 0 0 4
0 1 0 7
0 0 1 −1

], [
1 0 0
0 1 0
0 0 1

],
⎡
⎢
⎢
⎢
⎣

0 1 −2 0 1
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

, [0 0
0 0]
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The following matrices are in row echelon form but not reduced row echelon form.

[
1 4 −3 7
0 1 6 2
0 0 1 5

], [
1 1 0
0 1 0
0 0 0

], [
0 1 2 6 0
0 0 1 −1 0
0 0 0 0 1

]

EXAMPLE 2 | More on Row Echelon and Reduced
Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1,
whereas a matrix in reduced row echelon form has zeros below and above each leading 1.
Thus, with any real numbers substituted for the ∗’s, all matrices of the following types are in
row echelon form:

⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 1 ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

All matrices of the following types are in reduced row echelon form:

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎣

1 0 ∗ ∗
0 1 ∗ ∗
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 1 ∗ 0 0 0 ∗ ∗ 0 ∗
0 0 0 1 0 0 ∗ ∗ 0 ∗
0 0 0 0 1 0 ∗ ∗ 0 ∗
0 0 0 0 0 1 ∗ ∗ 0 ∗
0 0 0 0 0 0 0 0 1 ∗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

If, by a sequence of elementary row operations, the augmented matrix for a system of
linear equations is put in reduced row echelon form, then the solution set can be obtained
either by inspection or by converting certain linear equations to parametric form. Here
are some examples.

EXAMPLE 3 | Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and x4
has been reduced by elementary row operations to

⎡
⎢
⎢
⎢
⎣

1 0 0 0 3
0 1 0 0 −1
0 0 1 0 0
0 0 0 1 5

⎤
⎥
⎥
⎥
⎦

This matrix is in reduced row echelon form and corresponds to the equations

x1 = 3
x2 = −1

x3 = 0
x4 = 5

Thus, the system has a unique solution, namely, x1 = 3, x2 = −1, x3 = 0, x4 = 5, which can
also be expressed as the 4-tuple (3,−1, 0, 5).
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EXAMPLE 4 | Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns x, y,
and zhas been reduced by elementary row operations to the given reduced row echelon form.
Solve the system.

(a) [
1 0 0 0
0 1 2 0
0 0 0 1

] (b) [
1 0 3 −1
0 1 −4 2
0 0 0 0

] (c) [
1 −5 1 4
0 0 0 0
0 0 0 0

]

Solution (a) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 1

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.

Solution (b) The equation that corresponds to the last row of the augmented matrix is

0x+ 0y+ 0z = 0

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the linear
system corresponding to the augmented matrix is

x + 3z = −1
y − 4z = 2

In general, the variables in a linear system that correspond to the leading l’s in its augmented
matrix are called the leading variables, and the remaining variables are called the free vari-
ables. In this case the leading variables are x and y, and the variable z is the only free variable.
Solving for the leading variables in terms of the free variables gives

x = −1− 3z
y = 2+ 4z

From these equations we see that the free variable z can be treated as a parameter and
assigned an arbitrary value t, which then determines values for x and y. Thus, the solution
set can be represented by the parametric equations

x = −1− 3t, y = 2+ 4t, z = t

By substituting various values for t in these equations we can obtain various solutions of the
system. For example, setting t = 0 yields the solution

x = −1, y = 2, z = 0

and setting t = 1 yields the solution

x = −4, y = 6, z = 1

Solution (c) As explained in part (b), we can omit the equations corresponding to the zero
rows, in which case the linear system associated with the augmented matrix consists of the
single equation

x− 5y+ z = 4 (1)

fromwhichwe see that the solution set is a plane in three-dimensional space. Although (1) is
a valid formof the solution set, there aremany applications inwhich it is preferable to express
the solution set in parametric form. We can convert (1) to parametric form by solving for the
leading variable x in terms of the free variables y and z to obtain

x = 4+ 5y− z

From this equation we see that the free variables can be assigned arbitrary values, say y = s
and z = t, which then determine the value of x. Thus, the solution set can be expressed para-
metrically as

x = 4+ 5s− t, y = s, z = t (2)

We will usually denote
parameters in a general
solution by the letters
r, s, t, . . . , but any letters
that do not conflict with the
names of the unknowns can
be used. For systems with
more than three unknowns,
subscripted letters
such as t1, t2, t3, . . .
are convenient.
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Formulas, such as (2), that express the solution set of a linear system parametrically
have some associated terminology.

Definition 1

If a linear system has infinitely many solutions, then a set of parametric equa-
tions from which all solutions can be obtained by assigning numerical values to
the parameters is called a general solution of the system.

Thus, for example, Formula (2) is a general solution of system (iii) in the previous
example.

Elimination Methods
We have just seen how easy it is to solve a system of linear equations once its augmented
matrix is in reduced row echelon form. Now we will give a step-by-step algorithm that
can be used to reduce any matrix to reduced row echelon form. As we state each step in
the algorithm, we will illustrate the idea by reducing the following matrix to reduced row
echelon form.

⎡
⎢
⎢
⎣

0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

⎤
⎥
⎥
⎦

Step 1. Locate the leftmost column that does not consist entirely of zeros.

0 0 2 0 7 12

2 4 10 6 12 28

2 4 5 6 5 1

Leftmost nonzero column

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry
to the top of the column found in Step 1.

[
2 4 −10 6 12 28
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first and second rows in the
preceding matrix were interchanged.

Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the
first row by 1/a in order to introduce a leading 1.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
2 4 −5 6 −5 −1

] The first row of the preceding matrix
was multiplied by 12 .

Step 4. Add suitable multiples of the top row to the rows below so that all entries below
the leading 1 become zeros.

[
1 2 −5 3 6 14
0 0 −2 0 7 12
0 0 5 0 −17 −29

] −2 times the first row of the preceding
matrix was added to the third row.
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Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the
submatrix that remains. Continue in this way until the entire matrix is in row
echelon form.

1 2 5 3 6 14

0 0 2 0 7 12

0 0 5 0 17 29

Leftmost nonzero column

in the submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 5 0 17 29

The -rst row in the submatrix was

multiplied by 1
2

                                 to introduce a
leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

The top row in the submatrix was
covered, and we returned again to
Step 1.

Leftmost nonzero column

in the new submatrix

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1
2

1

–5 times the Arst row of the submatrix
was added to the second row of the
submatrix to introduce a zero below
the leading 1.

1 2 5 3 6 14

0 0 1 0 7
2

6

0 0 0 0 1 2

The ,rst (and only) row in the new
submatrix was multiplied by 2 to
introduce a leading 1.

The entire matrix is now in row echelon form. To find the reduced row echelon
form we need the following additional step.

Step 6. Beginning with the last nonzero row and working upward, add suitable multiples
of each row to the rows above to introduce zeros above the leading 1’s.

[
1 2 −5 3 6 14
0 0 1 0 0 1
0 0 0 0 1 2

] 7
2 times the third row of the preceding
matrix was added to the second row.

[
1 2 −5 3 0 2
0 0 1 0 0 1
0 0 0 0 1 2

] −6 times the third row was added to the
first row.

[
1 2 0 3 0 7
0 0 1 0 0 1
0 0 0 0 1 2

] 5 times the second row was added to the
first row.

The last matrix is in reduced row echelon form.

The algorithm we have just described for reducing a matrix to reduced row echelon
form is called Gauss–Jordan elimination. It consists of two parts, a forward phase in
which zeros are introduced below the leading 1’s and a backward phase in which zeros
are introduced above the leading 1’s. If only the forward phase is used, then the procedure
produces a row echelon form and is called Gaussian elimination. For example, in the
preceding computations a row echelon form was obtained at the end of Step 5.
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Historical Note

Carl Friedrich Gauss
(1777–1855)

Wilhelm Jordan
(1842–1899)

Although versions of Gaussian elimination were known much
earlier, its importance in scientific computation became clear
when the great German mathematician Carl Friedrich Gauss
used it to help compute the orbit of the asteroid Ceres from lim-
ited data. What happened was this: On January 1, 1801 the Sicil-
ian astronomer and Catholic priest Giuseppe Piazzi (1746–1826)
noticed a dim celestial object that he believed might be a “miss-
ing planet.” He named the object Ceres andmade a limited num-
ber of positional observations but then lost the object as it neared
the Sun. Gauss, then only 24 years old, undertook the problem of
computing the orbit of Ceres from the limited data using a tech-
nique called “least squares,” the equations of which he solved by
the method that we now call “Gaussian elimination.” The work
of Gauss created a sensation when Ceres reappeared a year later
in the constellation Virgo at almost the precise position that he
predicted! The basic idea of the method was further popularized
by the German engineer Wilhelm Jordan in his book on geodesy
(the science of measuring Earth shapes) entitled Handbuch der
Vermessungskunde and published in 1888.

[Images: Photo Inc/Photo Researchers/Getty Images (Gauss);
https://en.wikipedia.org/wiki/Andrey_Markov#/media/

File:Andrei_Markov.jpg. Public domain. (Jordan)]

EXAMPLE 5 | Gauss–Jordan Elimination

Solve by Gauss–Jordan elimination.

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = −1

5x3 + 10x4 + 15x6 = 5
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 6

Solution The augmented matrix for the system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6

⎤
⎥
⎥
⎥
⎦

Adding−2 times the first row to the second and fourth rows gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 −1 −2 0 −3 −1
0 0 5 10 0 15 5
0 0 4 8 0 18 6

⎤
⎥
⎥
⎥
⎦

Multiplying the second row by−1 and then adding−5 times the new second row to the third
row and−4 times the new second row to the fourth row gives

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 0 0
0 0 0 0 0 6 2

⎤
⎥
⎥
⎥
⎦
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Interchanging the third and fourth rows and then multiplying the third row of the resulting
matrix by 1

6 gives the row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the forward phase since
there are zeros below the leading 1’s.

Adding−3 times the third row to the second row and then adding 2 times the second row of
the resulting matrix to the first row yields the reduced row echelon form

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

This completes the backward phase since
there are zeros above the leading 1’s.

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 1
3

(3)

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Finally, we express the general solution of the system parametrically by assigning the free
variables x2, x4, and x5 arbitrary values r, s, and t, respectively. This yields

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

Note that in constructing
the linear system in (3) we
ignored the row of zeros
in the corresponding aug-
mented matrix. Why is this
justified?

Homogeneous Linear Systems
A system of linear equations is said to be homogeneous if the constant terms are all zero;
that is, the system has the form

a11 x1 + a12 x2 + ⋅ ⋅ ⋅ + a1nxn = 0
a21 x1 + a22 x2 + ⋅ ⋅ ⋅ + a2nxn = 0
...

...
...

...
am1 x1 + am2 x2 + ⋅ ⋅ ⋅ + amnxn = 0

Every homogeneous systemof linear equations is consistent because all such systemshave
x1 = 0, x2 = 0, . . . , xn = 0 as a solution. This solution is called the trivial solution; if there
are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only
two possibilities for its solutions:

• The system has only the trivial solution.
• The system has infinitely many solutions in addition to the trivial solution.

In the special case of a homogeneous linear system of two equations in two unknowns,
say

a1x + b1y = 0 [a1,b1 not both zero]

a2x + b2y = 0 [a2,b2 not both zero]

the graphs of the equations are lines through the origin, and the trivial solution corre-
sponds to the point of intersection at the origin (Figure 1.2.1).
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x

y

Only the trivial solution

x

y

In0nitely many
solutions

a1x + b1y = 0

a1x + b1y = 0
and

a2x + b2 y = 0

a2x + b2 y = 0

FIGURE 1.2.1

There is one case in which a homogeneous system is assured of having nontrivial
solutions—namely, whenever the system involves more unknowns than equations. To
see why, consider the following example of four equations in six unknowns.

EXAMPLE 6 | A Homogeneous System

Use Gauss–Jordan elimination to solve the homogeneous linear system

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 − 5x3 − 2x4 + 4x5 − 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0

(4)

Solution Observe that this system is the same as that in Example 5 except for the constants
on the right side, which in this case are all zero. The augmented matrix for this system is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
2 6 −5 −2 4 −3 0
0 0 5 10 0 15 0
2 6 0 8 4 18 0

⎤
⎥
⎥
⎥
⎦

(5)

which is the same as that in Example 5 except for the entries in the last column, which are
all zeros in this case. Thus, the reduced row echelon form of this matrix will be the same as
that of the augmentedmatrix in Example 5, except for the last column. However, a moment’s
reflection will make it evident that a column of zeros is not changed by an elementary row
operation, so the reduced row echelon form of (5) is

⎡
⎢
⎢
⎢
⎣

1 3 0 4 2 0 0
0 0 1 2 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(6)

The corresponding system of equations is

x1 + 3x2 + 4x4 + 2x5 = 0
x3 + 2x4 = 0

x6 = 0

Solving for the leading variables, we obtain

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 0

(7)

If we now assign the free variables x2, x4, and x5 arbitrary values r, s, and t, respectively, then
we can express the solution set parametrically as

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 0

Note that the trivial solution results when r = s = t = 0.
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Free Variables in Homogeneous Linear Systems
Example 6 illustrates two important points about solving homogeneous linear systems:

1. Elementary row operations do not alter columns of zeros in a matrix, so the reduced
row echelon form of the augmented matrix for a homogeneous linear system has
a final column of zeros. This implies that the linear system corresponding to the
reduced row echelon form is homogeneous, just like the original system.

2. When we constructed the homogeneous linear system corresponding to augmented
matrix (6), we ignored the row of zeros because the corresponding equation

0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0

does not impose any conditions on the unknowns. Thus, depending on whether or
not the reduced row echelon form of the augmented matrix for a homogeneous lin-
ear system has any zero rows, the linear system corresponding to that reduced row
echelon formwill either have the same number of equations as the original system or
it will have fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose
that the reduced row echelon form of the augmented matrix has r nonzero rows. Since
each nonzero row has a leading 1, and since each leading 1 corresponds to a leading vari-
able, the homogeneous system corresponding to the reduced row echelon form of the aug-
mented matrix must have r leading variables and n − r free variables. Thus, this system is
of the form

xk1 + ∑( ) = 0
xk2 + ∑( ) = 0

. . .
...

xkr + ∑( ) = 0

(8)

where in each equation the expression∑( ) denotes a sum that involves the free variables,
if any [see (7), for example]. In summary, we have the following result.

Theorem 1.2.1

Free Variable Theorem for Homogeneous Systems
If a homogeneous linear system has n unknowns, and if the reduced row echelon
form of its augmented matrix has r nonzero rows, then the system has n − r free
variables.

Theorem 1.2.1 has an important implication for homogeneous linear systems with
Note that Theorem 1.2.2
applies only to homoge-
neous systems—a non-
homogeneous system with
more unknowns than equa-
tions need not be consistent.
However, we will prove
later that if a nonhomoge-
neous system with more
unknowns than equations
is consistent, then it has
infinitely many solutions.

more unknowns than equations. Specifically, if a homogeneous linear system hasm equa-
tions in n unknowns, and ifm < n, then it must also be true that r < n (why?). This being
the case, the theorem implies that there is at least one free variable, and this implies that
the system has infinitely many solutions. Thus, we have the following result.

Theorem 1.2.2

A homogeneous linear system with more unknowns than equations has infinitely
many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6
would have infinitely many solutions since it has four equations in six unknowns.



November 12, 2018 13:09 C01 Sheet number 20 Page number 20 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

20 CHAPTER 1 Systems of Linear Equations and Matrices

Gaussian Elimination and Back-Substitution
For small linear systems that are solved by hand (such asmost of those in this text), Gauss–
Jordan elimination (reduction to reduced row echelon form) is a good procedure to use.
However, for large linear systems that require a computer solution, it is generally more
efficient to use Gaussian elimination (reduction to row echelon form) followed by a tech-
nique known as back-substitution to complete the process of solving the system. The
next example illustrates this technique.

EXAMPLE 7 | Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

⎡
⎢
⎢
⎢
⎣

1 3 −2 0 2 0 0
0 0 1 2 0 3 1
0 0 0 0 0 1 1

3
0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

To solve the corresponding system of equations

x1 + 3x2 − 2x3 + 2x5 = 0
x3 + 2x4 + 3x6 = 1

x6 = 1
3

we proceed as follows:
Step 1. Solve the equations for the leading variables.

x1 = −3x2 + 2x3 − 2x5
x3 = 1− 2x4 − 3x6
x6 = 1

3

Step 2. Beginning with the bottom equation and working upward, successively substitute
each equation into all the equations above it.

Substituting x6 = 1
3 into the second equation yields

x1 = −3x2 + 2x3 − 2x5
x3 = −2x4
x6 = 1

3

Substituting x3 = −2x4 into the first equation yields

x1 = −3x2 − 4x4 − 2x5
x3 = −2x4
x6 = 1

3

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r, s, and t, respectively, the general
solution is given by the formulas

x1 = −3r− 4s− 2t, x2 = r, x3 = −2s, x4 = s, x5 = t, x6 = 1
3

This agrees with the solution obtained in Example 5.
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EXAMPLE 8 | Existence and Uniqueness of Solutions

Suppose that thematrices below are augmentedmatrices for linear systems in the unknowns
x1, x2, x3, and x4. These matrices are all in row echelon form but not reduced row echelon
form. Discuss the existence and uniqueness of solutions to the corresponding linear systems

(a)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

(b)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

(c)
⎡
⎢
⎢
⎢
⎣

1 −3 7 2 5
0 1 2 −4 1
0 0 1 6 9
0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

Solution (a) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 1

from which it is evident that the system is inconsistent.

Solution (b) The last row corresponds to the equation

0x1 + 0x2 + 0x3 + 0x4 = 0

which has no effect on the solution set. In the remaining three equations the variables x1, x2,
and x3 correspond to leading 1’s and hence are leading variables. The variable x4 is a free
variable. With a little algebra, the leading variables can be expressed in terms of the free
variable, and the free variable can be assigned an arbitrary value. Thus, the system must
have infinitely many solutions.

Solution (c) The last row corresponds to the equation

x4 = 0

which gives us a numerical value for x4. If we substitute this value into the third equation,
namely,

x3 + 6x4 = 9
we obtain x3 = 9. You should now be able to see that if we continue this process and substi-
tute the known values of x3 and x4 into the equation corresponding to the second row, we
will obtain a unique numerical value for x2; and if, finally, we substitute the known values
of x4, x3, and x2 into the equation corresponding to the first row, we will produce a unique
numerical value for x1. Thus, the system has a unique solution.

Some Facts About Echelon Forms
There are three facts about row echelon forms and reduced row echelon forms that are
important to know but we will not prove:

1. Every matrix has a unique reduced row echelon form; that is, regardless of whether
you use Gauss–Jordan elimination or some other sequence of elementary row opera-
tions, the same reduced row echelon form will result in the end.*

2. Row echelon forms are not unique; that is, different sequences of elementary row
operations can result in different row echelon forms.

*A proof of this result can be found in the article “The Reduced Row Echelon Form of a Matrix Is Unique: A Simple
Proof,” by Thomas Yuster,Mathematics Magazine, Vol. 57, No. 2, 1984, pp. 93–94.
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3. Although row echelon forms are not unique, the reduced row echelon form and all
row echelon forms of a matrix𝐴 have the same number of zero rows, and the leading
1’s always occur in the same positions. Those are called the pivot positions of𝐴. The
columns containing the leading 1’s in a row echelon or reduced row echelon form
of 𝐴 are called the pivot columns of 𝐴, and the rows containing the leading 1’s are
called the pivot rows of 𝐴. A nonzero entry in a pivot position of 𝐴 is called a pivot
of 𝐴.

EXAMPLE 9 | Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

𝐴 = [
0 0 −2 0 7 12
2 4 −10 6 12 28
2 4 −5 6 −5 −1

] to be [
1 2 −5 3 6 14
0 0 1 0 − 7

2 −6
0 0 0 0 1 2

]

The leading 1’s occur in (row 1, column 1), (row 2, column 3), and (row 3, column 5). These
are the pivot positions of𝐴. The pivot columns of𝐴 are 1, 3, and 5, and the pivot rows are 1,
2, and 3. The pivots of 𝐴 are the nonzero numbers in the pivot positions. These are marked
by shaded rectangles in the following diagram.

0 0 2 0 7 12

2 4A = 10 6 12 28

2 4 5 6 5 1

Pivot columns

If A is the augmented matrix
for a linear system, then
the pivot columns identify
the leading variables. As an
illustration, in Example 5
the pivot columns are 1,
3, and 6, and the leading
variables are x1, x3, and x6.

Roundoff Error and Instability
There is often a gap between mathematical theory and its practical implementation—
Gauss–Jordan elimination and Gaussian elimination being good examples. The problem
is that computers generally approximate numbers, thereby introducing roundoff errors,
so unless precautions are taken, successive calculationsmaydegrade an answer to a degree
that makes it useless. Algorithms in which this happens are called unstable. There are
various techniques for minimizing roundoff error and instability. For example, it can be
shown that for large linear systems Gauss–Jordan elimination involves roughly 50%more
operations than Gaussian elimination, so most computer algorithms are based on the lat-
ter method. Some of these matters will be considered in Chapter 9.

Exercise Set 1.2

In Exercises 1–2, determine whether the matrix is in row echelon
form, reduced row echelon form, both, or neither.

1. a. [
1 0 0
0 1 0
0 0 1

] b. [
1 0 0
0 1 0
0 0 0

] c. [
0 1 0
0 0 1
0 0 0

]

d. [
1 0 3 1
0 1 2 4] e.

⎡
⎢
⎢
⎢
⎣

1 2 0 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

f. [
0 0
0 0
0 0

] g. [
1 −7 5 5
0 1 3 2]

2. a. [
1 2 0
0 1 0
0 0 0

] b. [
1 0 0
0 1 0
0 2 0

] c. [
1 3 4
0 0 1
0 0 0

]

d. [
1 5 −3
0 1 1
0 0 0

] e. [
1 2 3
0 0 0
0 0 1

]

f.
⎡
⎢
⎢
⎢
⎣

1 2 3 4 5
1 0 7 1 3
0 0 0 0 1
0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

g. [
1 −2 0 1
0 0 1 −2]
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In Exercises 3–4, suppose that the augmentedmatrix for a linear sys-
tem has been reduced by row operations to the given row echelon
form. Identify the pivot rows and columns and solve the system.

3. a. [
1 −3 4 7
0 1 2 2
0 0 1 5

]

b. [
1 0 8 −5 6
0 1 4 −9 3
0 0 1 1 2

]

c.
⎡
⎢
⎢
⎢
⎣

1 7 −2 0 −8 −3
0 0 1 1 6 5
0 0 0 1 3 9
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 7 1
0 1 4 0
0 0 0 1

]

4. a. [
1 0 0 −3
0 1 0 0
0 0 1 7

]

b. [
1 0 0 −7 8
0 1 0 3 2
0 0 1 1 −5

]

c.
⎡
⎢
⎢
⎢
⎣

1 −6 0 0 3 −2
0 0 1 0 4 7
0 0 0 1 5 8
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎦

d. [
1 −3 0 0
0 0 1 0
0 0 0 1

]

In Exercises 5–8, solve the system by Gaussian elimination.

5. x1 + x2 + 2x3 = 8
−x1 − 2x2 + 3x3 = 1
3x1 − 7x2 + 4x3 = 10

6. 2x1 + 2x2 + 2x3 = 0
−2x1 + 5x2 + 2x3 = 1
8x1 + x2 + 4x3 = −1

7. x − y + 2z − 𝑤 = −1
2x + y − 2z − 2𝑤 = −2
−x + 2y − 4z + 𝑤 = 1
3x − 3𝑤 = −3

8. − 2b + 3c = 1
3a + 6b − 3c = −2
6a + 6b + 3c = 5

In Exercises 9–12, solve the system by Gauss–Jordan elimination.

9. Exercise 5 10. Exercise 6

11. Exercise 7 12. Exercise 8

In Exercises 13–14, determine whether the homogeneous system has
nontrivial solutions by inspection (without pencil and paper).

13. 2x1 − 3x2 + 4x3 − x4 = 0
7x1 + x2 − 8x3 + 9x4 = 0
2x1 + 8x2 + x3 − x4 = 0

14. x1 + 3x2 − x3 = 0
x2 − 8x3 = 0

4x3 = 0

In Exercises 15–22, solve the given linear system by any method.

15. 2x1 + x2 + 3x3 = 0
x1 + 2x2 = 0

x2 + x3 = 0

16. 2x − y − 3z = 0
−x + 2y − 3z = 0
x + y + 4z = 0

17. 3x1 + x2 + x3 + x4 = 0
5x1 − x2 + x3 − x4 = 0

18. 𝑣 + 3𝑤 − 2x = 0
2u + 𝑣 − 4𝑤 + 3x = 0
2u + 3𝑣 + 2𝑤 − x = 0

−4u − 3𝑣 + 5𝑤 − 4x = 0

19. 2x + 2y + 4z = 0
𝑤 − y − 3z = 0
2𝑤 + 3x + y + z = 0

−2𝑤 + x + 3y − 2z = 0

20. x1 + 3x2 + x4 = 0
x1 + 4x2 + 2x3 = 0
− 2x2 − 2x3 − x4 = 0

2x1 − 4x2 + x3 + x4 = 0
x1 − 2x2 − x3 + x4 = 0

21. 2𝐼1 − 𝐼2 + 3𝐼3 + 4𝐼4 = 9
𝐼1 − 2𝐼3 + 7𝐼4 = 11
3𝐼1 − 3𝐼2 + 𝐼3 + 5𝐼4 = 8
2𝐼1 + 𝐼2 + 4𝐼3 + 4𝐼4 = 10

22. 𝑍3 + 𝑍4 + 𝑍5 = 0
−𝑍1 − 𝑍2 + 2𝑍3 − 3𝑍4 + 𝑍5 = 0
𝑍1 + 𝑍2 − 2𝑍3 − 𝑍5 = 0
2𝑍1 + 2𝑍2 − 𝑍3 + 𝑍5 = 0

In each part of Exercises 23–24, the augmented matrix for a lin-
ear system is given in which the asterisk represents an unspecified
real number. Determine whether the system is consistent, and if so
whether the solution is unique. Answer “inconclusive” if there is not
enough information to make a decision.

23. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

] b. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 0

]

c. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1

] d. [
1 ∗ ∗ ∗
0 0 ∗ 0
0 0 1 ∗

]

24. a. [
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 1

] b. [
1 0 0 ∗
∗ 1 0 ∗
∗ ∗ 1 ∗

]

c. [
1 0 0 0
1 0 0 1
1 ∗ ∗ ∗

] d. [
1 ∗ ∗ ∗
1 0 0 1
1 0 0 1

]

In Exercises 25–26, determine the values of a for which the system
has no solutions, exactly one solution, or infinitely many solutions.
25. x + 2y − 3z = 4

3x − y + 5z = 2
4x + y + (a2 − 14)z = a+ 2
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26. x + 2y + z = 2
2x − 2y + 3z = 1
x + 2y − (a2 − 3)z = a

In Exercises 27–28, what condition, if any, must a, b, and c satisfy
for the linear system to be consistent?

27. x + 3y − z = a
x + y + 2z = b

2y − 3z = c

28. x + 3y + z = a
−x − 2y + z = b
3x + 7y − z = c

In Exercises 29–30, solve the following systems, where a, b, and c are
constants.

29. 2x + y = a
3x + 6y = b

30. x1 + x2 + x3 = a
2x1 + 2x3 = b

3x2 + 3x3 = c

31. Find two different row echelon forms of

[1 3
2 7]

This exercise shows that a matrix can have multiple row eche-
lon forms.

32. Reduce

[
2 1 3
0 −2 −29
3 4 5

]

to reduced row echelon form without introducing fractions at
any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if
0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋, and 0 ≤ 𝛾 ≤ 2𝜋.

sin𝛼 + 2 cos𝛽 + 3 tan𝛾 = 0
2 sin𝛼 + 5 cos𝛽 + 3 tan𝛾 = 0
− sin𝛼 − 5 cos𝛽 + 5 tan𝛾 = 0

[Hint: Begin by making the substitutions x = sin𝛼,
y = cos𝛽, and z = tan𝛾.]

34. Solve the following system of nonlinear equations for the
unknown angles𝛼, 𝛽, and 𝛾, where 0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 2𝜋,
and 0 ≤ 𝛾 < 𝜋.

2 sin𝛼 − cos𝛽 + 3 tan𝛾 = 3
4 sin𝛼 + 2 cos𝛽 − 2 tan𝛾 = 2
6 sin𝛼 − 3 cos𝛽 + tan𝛾 = 9

35. Solve the following system of nonlinear equations for x, y,
and z.

x2 + y2 + z2 = 6
x2 − y2 + 2z2 = 2
2x2 + y2 − z2 = 3

[Hint: Begin by making the substitutions 𝑋 = x2, 𝑌 = y2,
𝑍 = z2.]

36. Solve the following system for x, y, and z.
1
x +

2
y −

4
z = 1

2
x +

3
y +

8
z = 0

− 1
x +

9
y +

10
z = 5

37. Find the coefficients a, b, c, and d so that the curve shown in
the accompanying figure is the graph of the equation
y = ax3 + bx2 + cx+ d.

y

x

–2 6

–20

20
(0, 10) (1, 7)

(3, –11)
(4, –14)

FIGURE Ex-37

38. Find the coefficients a, b, c, and d so that the circle shown in
the accompanying figure is given by the equation
ax2 + ay2 + bx+ cy+ d = 0.

y

x

(–2, 7)

(4, –3)

(–4, 5)

FIGURE Ex-38

39. If the linear system
a1x+ b1y+ c1z = 0
a2x− b2y+ c2z = 0
a3x+ b3 y− c3z = 0

has only the trivial solution, what can be said about the solu-
tions of the following system?

a1x+ b1y+ c1z = 3
a2x− b2y+ c2z = 7
a3x+ b3 y− c3z = 11

40. a. If 𝐴 is a matrix with three rows and five columns, then
what is the maximum possible number of leading 1’s in its
reduced row echelon form?

b. If 𝐵 is a matrix with three rows and six columns, then
what is themaximumpossible number of parameters in the
general solution of the linear system with augmented
matrix 𝐵?

c. If𝐶 is amatrixwith five rows and three columns, thenwhat
is the minimum possible number of rows of zeros in any
row echelon form of 𝐶?

41. Describe all possible reduced row echelon forms of

a. [
a b c
d e 𝑓
g h i

] b.
⎡
⎢
⎢
⎢
⎣

a b c d
e 𝑓 g h
i j k l
m n p q

⎤
⎥
⎥
⎥
⎦
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42. Consider the system of equations
ax+ by = 0
cx+ dy = 0
ex+𝑓y = 0

Discuss the relative positions of the lines ax+ by = 0,
cx+ dy = 0, and ex+𝑓y = 0 when the system has only the
trivial solution and when it has nontrivial solutions.

Working with Proofs

43. a. Prove that if ad− bc ≠ 0, then the reduced row echelon
form of

[a b
c d] is [1 0

0 1]

b. Use the result in part (a) to prove that if ad− bc ≠ 0, then
the linear system

ax+ by = k
cx+ dy = l

has exactly one solution.

True-False Exercises
TF. In parts (a)–(i) determine whether the statement is true or

false, and justify your answer.
a. If a matrix is in reduced row echelon form, then it is also

in row echelon form.

b. If an elementary row operation is applied to a matrix that
is in row echelon form, the resulting matrix will still be in
row echelon form.

c. Every matrix has a unique row echelon form.

d. A homogeneous linear system in n unknowns whose cor-
responding augmentedmatrix has a reduced row echelon
form with r leading 1’s has n− r free variables.

e. All leading 1’s in amatrix in row echelon formmust occur
in different columns.

f. If every column of a matrix in row echelon form has a
leading 1, then all entries that are not leading 1’s are zero.

g. If a homogeneous linear system of n equations in n
unknowns has a corresponding augmented matrix with a
reduced row echelon form containing n leading 1’s, then
the linear system has only the trivial solution.

h. If the reduced row echelon form of the augmentedmatrix
for a linear system has a row of zeros, then the system
must have infinitely many solutions.

i. If a linear system has more unknowns than equations,
then it must have infinitely many solutions.

Working with Technology
T1. Find the reduced row echelon form of the augmented matrix

for the linear system

6x1 + x2 + 4x4 = −3
−9x1 + 2x2 + 3x3 − 8x4 = 1
7x1 − 4x3 + 5x4 = 2

Use your result to determine whether the system is consistent
and, if so, find its solution.

T2. Find values of the constants 𝐴, 𝐵, 𝐶, and 𝐷 that make the
following equation an identity (i.e., true for all values of x).

3x3 + 4x2 − 6x
(x2 + 2x+ 2)(x2 − 1) =

𝐴x+𝐵
x2 + 2x+ 2

+ 𝐶
x− 1

+ 𝐷
x+ 1

[Hint: Obtain a common denominator on the right, and then
equate corresponding coefficients of the various powers of x in
the two numerators. Students of calculus will recognize this
as a problem in partial fractions.]

1.3 Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices
for linear systems. In this section we will begin to study matrices as objects in their own
right by defining operations of addition, subtraction, and multiplication on them.

Matrix Notation and Terminology
In Section 1.2we used rectangular arrays of numbers, called augmentedmatrices, to abbre-
viate systems of linear equations. However, rectangular arrays of numbers occur in other
contexts as well. For example, the following rectangular array with three rows and seven
columns might describe the number of hours that a student spent studying three subjects
during a certain week:



November 12, 2018 13:09 C01 Sheet number 26 Page number 26 cyanmagenta yellow black © 2018, Anton Textbooks, Inc., All rights reserved

26 CHAPTER 1 Systems of Linear Equations and Matrices

2 3

3

1

2

1

3

4

4

1

1

3

0

4

2

0

2

2

2

Mon.

Math

History

Language

Tues. Wed. Thurs. Fri. Sat. Sun.

0

4

If we suppress the headings, then we are left with the following rectangular array of num-
bers with three rows and seven columns, called a “matrix”:

[
2 3 2 4 1 4 2
0 3 1 4 3 2 2
4 1 3 1 0 0 2

]

More generally, we make the following definition.

Definition 1

A matrix is a rectangular array of numbers. The numbers in the array are called
the entries of the matrix.

Matrix brackets are often
omitted from 1× 1 matrices,
making it impossible to tell,
for example, whether the
symbol 4 denotes the num-
ber “four” or the matrix [4].
This rarely causes problems
because it is usually possible
to tell which is meant from
the context.

EXAMPLE 1 | Examples of Matrices

Some examples of matrices are

[
1 2
3 0

−1 4
], [2 1 0 −3],

⎡
⎢
⎢
⎣

e 𝜋 −√2
0 1

2 1
0 0 0

⎤
⎥
⎥
⎦
, [13], [4]

The size of a matrix is described in terms of the number of rows (horizontal lines)
and columns (vertical lines) it contains. For example, the first matrix in Example 1 has
three rows and two columns, so its size is 3 by 2 (written 3 × 2). In a size description, the
first number always denotes the number of rows, and the second denotes the number of
columns. The remaining matrices in Example 1 have sizes 1 × 4, 3 × 3, 2 × 1, and 1 × 1,
respectively.

A matrix with only one row, such as the second in Example 1, is called a row vector
(or a rowmatrix), and amatrix with only one column, such as the fourth in that example,
is called a column vector (or a columnmatrix). The fifth matrix in that example is both
a row vector and a column vector.

We will use capital letters to denote matrices and lowercase letters to denote numeri-
cal quantities; thus we might write

𝐴 = [2 1 7
3 4 2] or 𝐶 = [a b c

d e 𝑓]

Whendiscussingmatrices, it is common to refer to numerical quantities as scalars. Unless
stated otherwise, scalars will be real numbers; complex scalars will be considered later in
the text.
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The entry that occurs in row i and column j of a matrix𝐴will be denoted by aij. Thus
a general 3 × 4 matrix might be written as

𝐴 = [
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]

and a generalm × nmatrix as

𝐴 =
⎡
⎢
⎢
⎢
⎣

a11 a12 ⋅ ⋅ ⋅ a1n
a21 a22 ⋅ ⋅ ⋅ a2n
...

...
...

am1 am2 ⋅ ⋅ ⋅ amn

⎤
⎥
⎥
⎥
⎦

(1)

When a compact notation is desired, matrix (1) can be written as
𝐴 = [aij]m×n or 𝐴 = [aij]

the first notation being used when it is important in the discussion to know the size, and
the secondwhen the size need not be emphasized. Usually, wewill match the letter denot-
ing a matrix with the letter denoting its entries; thus, for a matrix 𝐵 we would generally
use bij for the entry in row i and column j, and for amatrix𝐶wewould use the notation cij.

The entry in row i and column j of amatrix𝐴 is also commonly denoted by the symbol
(𝐴)ij. Thus, for matrix (1) above, we have

(𝐴)ij = aij
and for the matrix

𝐴 = [2 −3
7 0]

we have (𝐴)11 = 2, (𝐴)12 = −3, (𝐴)21 = 7, and (𝐴)22 = 0.
Row and column vectors are of special importance, and it is common practice to

denote them by boldface lowercase letters rather than capital letters. For such matrices,
double subscripting of the entries is unnecessary. Thus a general 1 × n row vector a and
a generalm × 1 column vector b would be written as

a = [a1 a2 ⋅ ⋅ ⋅ an] and b =
⎡
⎢
⎢
⎢
⎣

b1
b2...
bm

⎤
⎥
⎥
⎥
⎦

Amatrix 𝐴 with n rows and n columns is called a square matrix of order n, and the
shaded entries a11, a22, . . . , ann in (2) are said to be on themain diagonal of 𝐴.

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann

(2)

Operations on Matrices
So far, we have used matrices to abbreviate the work in solving systems of linear equa-
tions. For other applications, however, it is desirable to develop an “arithmetic of matri-
ces” in which matrices can be added, subtracted, and multiplied in a useful way. The
remainder of this section will be devoted to developing this arithmetic.

Definition 2

Two matrices are defined to be equal if they have the same size and their corre-
sponding entries are equal.
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EXAMPLE 2 | Equality of Matrices

Consider the matrices

𝐴 = [2 1
3 x], 𝐵 = [2 1

3 5], 𝐶 = [2 1 0
3 4 0]

If x = 5, then𝐴 = 𝐵, but for all other values of x the matrices 𝐴 and 𝐵 are not equal, since
not all of their corresponding entries are the same. There is no value of x for which 𝐴 = 𝐶
since𝐴 and 𝐶 have different sizes.

The equality of two matrices

A=[aij] and B=[bij]
of the same size can be
expressed either by writing

(A)i j=(B)i j
or by writing

ai j= bi j

Definition 3

If𝐴 and 𝐵 are matrices of the same size, then the sum𝐴 + 𝐵 is the matrix obtained
by adding the entries of 𝐵 to the corresponding entries of 𝐴, and the difference
𝐴 − 𝐵 is the matrix obtained by subtracting the entries of 𝐵 from the corresponding
entries of 𝐴. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if 𝐴 = [aij] and 𝐵 = [bij] have the same size, then

(𝐴 + 𝐵)ij = (𝐴)ij + (𝐵)ij = aij + bij and (𝐴 − 𝐵)ij = (𝐴)ij − (𝐵)ij = aij − bij

EXAMPLE 3 | Addition and Subtraction

Consider the matrices

𝐴 =
⎡⎢⎢⎢
⎣

2 1 0 3
−1 0 2 4
4 −2 7 0

⎤⎥⎥⎥
⎦

, 𝐵 =
⎡⎢⎢⎢
⎣

−4 3 5 1
2 2 0 −1
3 2 −4 5

⎤⎥⎥⎥
⎦

, 𝐶 = [1 1
2 2]

Then

𝐴+𝐵 =
⎡⎢⎢⎢
⎣

−2 4 5 4
1 2 2 3
7 0 3 5

⎤⎥⎥⎥
⎦

and 𝐴−𝐵 =
⎡⎢⎢⎢
⎣

6 −2 −5 2
−3 −2 2 5
1 −4 11 −5

⎤⎥⎥⎥
⎦

The expressions𝐴+𝐶, 𝐵 +𝐶,𝐴−𝐶, and 𝐵 −𝐶 are undefined.

Definition 4

If 𝐴 is any matrix and c is any scalar, then the product c𝐴 is the matrix obtained
by multiplying each entry of the matrix 𝐴 by c. The matrix c𝐴 is said to be a scalar
multiple of 𝐴.

In matrix notation, if 𝐴 = [aij], then

(c𝐴)ij = c(𝐴)ij = caij
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EXAMPLE 4 | Scalar Multiples

For the matrices

𝐴 = [2 3 4
1 3 1], 𝐵 = [ 0 2 7

−1 3 −5], 𝐶 = [9 −6 3
3 0 12]

we have

2𝐴 = [4 6 8
2 6 2], (−1)𝐵 = [0 −2 −7

1 −3 5],
1
3𝐶 = [3 −2 1

1 0 4]

It is common practice to denote (−1)𝐵 by−𝐵.

Thus far we have defined multiplication of a matrix by a scalar but not the multi-
plication of two matrices. Since matrices are added by adding corresponding entries and
subtracted by subtracting corresponding entries, it would seem natural to definemultipli-
cation of matrices bymultiplying corresponding entries. However, it turns out that such a
definition would not be very useful. Experience has led mathematicians to the following
definition, the motivation for which will be given later in this chapter.

Definition 5

If 𝐴 is an m × r matrix and 𝐵 is an r × n matrix, then the product 𝐴𝐵 is the
m × n matrix whose entries are determined as follows: To find the entry in row i
and column j of 𝐴𝐵, single out row i from the matrix 𝐴 and column j from the
matrix 𝐵. Multiply the corresponding entries from the row and column together,
and then add the resulting products.

EXAMPLE 5 | Multiplying Matrices

Consider the matrices

𝐴 = [1 2 4
2 6 0], 𝐵 = [

4 1 4 3
0 −1 3 1
2 7 5 2

]

Since 𝐴 is a 2 × 3 matrix and 𝐵 is a 3 × 4 matrix, the product 𝐴𝐵 is a 2 × 4 matrix. To
determine, for example, the entry in row 2 and column 3 of𝐴𝐵, we single out row 2 from𝐴
and column 3 from𝐵. Then, as illustrated below, wemultiply corresponding entries together
and add up these products.

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2
26

(2 4) (6 3) (0 5) 26

The entry in row 1 and column 4 of𝐴𝐵 is computed as follows:

1 2 4

2 6 0

4 1 4 3

0 1 3 1

2 7 5 2

13

(1 3) (2 1) (4 2) 13
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The computations for the remaining entries are

(1 ⋅ 4) + (2 ⋅ 0) + (4 ⋅ 2) = 12
(1 ⋅ 1) − (2 ⋅ 1) + (4 ⋅ 7) = 27
(1 ⋅ 4) + (2 ⋅ 3) + (4 ⋅ 5) = 30
(2 ⋅ 4) + (6 ⋅ 0) + (0 ⋅ 2) = 8
(2 ⋅ 1) − (6 ⋅ 1) + (0 ⋅ 7) = −4
(2 ⋅ 3) + (6 ⋅ 1) + (0 ⋅ 2) = 12

𝐴𝐵 = [12 27 30 13
8 −4 26 12]

The definition of matrix multiplication requires that the number of columns of the
first factor 𝐴 be the same as the number of rows of the second factor 𝐵 in order to form
the product 𝐴𝐵. If this condition is not satisfied, the product is undefined. A convenient
way to determine whether a product of two matrices is defined is to write down the size
of the first factor and, to the right of it, write down the size of the second factor. If, as in
(3), the inside numbers are the same, then the product is defined. The outside numbers
then give the size of the product.
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EXAMPLE 6 | Determining Whether a Product Is Defined

Suppose that𝐴, 𝐵, and 𝐶 are matrices with the following sizes:

𝐴 𝐵 𝐶
3 × 4 4 × 7 7 × 3

Then, 𝐴𝐵 is defined and is a 3 × 7 matrix; 𝐵𝐶 is defined and is a 4 × 3 matrix; and 𝐶𝐴 is
defined and is a 7 × 4 matrix. The products𝐴𝐶, 𝐶𝐵, and 𝐵𝐴 are all undefined.

In general, if 𝐴 = [aij] is an m × r matrix and 𝐵 = [bij] is an r × n matrix, then, as
illustrated by the shading in the following display,

AB =

a11 a12 · · · a1r
a21 a22 · · · a2r
...

...
...

ai1 ai2 · · · air
...

...
...

am1 am2 · · · amr

b11 b12 · · · b1 j · · · b1n

b21 b22 · · · b2 j · · · b2n
...

...
...

...

br1 br2 · · · br j · · · brn

(4)

the entry (𝐴𝐵)ij in row i and column j of 𝐴𝐵 is given by

(𝐴𝐵)i j = ai1b1j + ai2b2 j + ai3b3 j + ⋅ ⋅ ⋅ + airbr j (5)

Formula (5) is called the row-column rule for matrix multiplication.

Partitioned Matrices
A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal
and vertical rules between selected rows and columns. For example, the following are




